12/2/11

The perfect truth cannot be stated

From "Truth and Falsity and Error" in _Dictionary of Philosophy and Psychology_ vol. 2 (1902) pp. 718-20.

CP 5.567.
These characters equally apply to pure mathematics. Projective geometry is not pure mathematics, unless it be recognized that whatever is said of rays holds good of every family of curves of which there is one and one only through any two points, and any two of which have a point in common. But even then it is not pure mathematics until for points we put any complete determinations of any two-dimensional continuum. Nor will that be enough. A proposition is not a statement of perfectly pure mathematics until it is devoid of all definite meaning, and comes to this — that a property of a certain icon is pointed out and is declared to belong to anything like it, of which instances are given. The perfect truth cannot be stated, except in the sense that it confesses its imperfection. The pure mathematician deals exclusively with hypotheses. Whether or not there is any corresponding real thing, he does not care. His hypotheses are creatures of his own imagination; but he discovers in them relations which surprise him sometimes. A metaphysician may hold that this very forcing upon the mathematician's acceptance of propositions for which he was not prepared, proves, or even constitutes, a mode of being independent of the mathematician's thought, and so a _reality_. But whether there is any reality or not, the truth of the pure mathematical proposition is constituted by the impossibility of ever finding a case in which it fails. This, however, is only possible if we confess the impossibility of precisely defining it.

Cap tip Ben

RECCMENDATION Richard Gordon Quantum Touch

The Slow as Molasses Press